Ranking systems

Robust Privacy-Preserving Federated Item Ranking in Online Marketplaces: Exploiting Platform Reputation for Effective Aggregation

Centralized item ranking in online marketplaces compromises user privacy and is vulnerable to manipulation. The introduction of a federated, reputation-based ranking system preserves privacy, ensures fairness, and delivers robust and effective rankings. The growth of online marketplaces has transformed consumer experiences, offering diverse products aggregated from multiple sellers. However, the centralized nature of these platforms …

Continue Reading
Algorithmic fairness Ranking systems

Towards Ethical Item Ranking: A Paradigm Shift from User-Centric to Item-Centric Approaches

By eliminating user-centric biases and adopting a purely item-focused approach, it is possible to achieve ethical and effective ranking systems—ensuring fairness, resilience, and compliance with regulations on responsible AI. Ranking systems are essential in online platforms, shaping user experiences and influencing product visibility and sales. However, traditional user-centric ranking systems, which assign reputation scores to …

Continue Reading
Algorithmic bias Ranking systems

Robust reputation independence in ranking systems for multiple sensitive attributes

Ranking systems that account for the reputation of the users can be biased towards different demographic groups, especially when considering multiple sensitive attributes (e.g., gender and age). Providing guarantees of reputation independence can lead to unbiased and effective rankings. Moreover, these rankings are also robust to attacks. In a study, published by the Machine Learning …

Continue Reading
Algorithmic bias Ranking systems

Reputation Equity in Ranking Systems

Reputation-based ranking systems can be biased towards the sensitive attributes of the users, meaning that certain demographic groups have systematically lower reputation scores. Nevertheless, if we unbias the reputation scores considering one sensitive attribute, bias still occurs when considering different sensitive attributes. For this reason, reputation scores should be unbiased independently of any sensitive attribute …

Continue Reading
Algorithmic bias Ranking systems

Reputation (in)dependence in ranking systems: demographics influence over output disparities

Your reputation on the Web does not depend only on your behavior, but also on your sensitive attributes. Concretely, belonging to a minority demographic group affects your reputation and how your preferences are valued in online ranking systems. In a recent SIGIR 2020 paper with Guilherme Ramos, we considered reputation-based ranking systems, which is a …

Continue Reading