Algorithmic bias Algorithmic fairness Recommender systems

Disparate Impact in Item Recommendation: a Case of Geographic Imbalance

Data imbalances, related to the country of production of an item, lead to the under-recommendation of items produced in the smaller (less represented) countries. Re-ranking the recommendation lists, by balancing item relevance with the promotion of items produced in smaller countries can introduce equity in terms of visibility and exposure, without affecting recommendation effectiveness. In …

Continue Reading
Algorithmic bias Algorithmic fairness Recommender systems

From the Beatles to Billie Eilish: Connecting Provider Representativeness and Exposure in Session-Based Recommender Systems

The size of a provider’s catalog in a platform affects the exposure that will be given to that provider by session-based recommender systems. Small providers, that are as popular as the big ones, are likely to get under-exposed in the recommendations. In an ECIR 2021 paper, with Alejandro Ariza, Francesco Fabbri, and Maria Salamó, we highlight side effects …

Continue Reading
Algorithmic fairness Recommender systems

The effect of homophily on disparate visibility of minorities in people recommender systems

Demographics and homophily are the main drivers behind people recommendation in social networks and can affect the visibility that is given to users when they are recommended. These phenomena mainly impact users who belong to the minority groups, which have lower possibilities of being recommended, unless they are highly homophilic. In a recent ICWSM 2020 …

Continue Reading